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Abstract—We present an h-adaptive time domain discontinu-
ous Galerkin (TDDG) method for electromagnetics problem in
which space and time are directly discretized by unstructured
grids that satisfy a specific causality constraint. This enables a
local and asynchronous solution procedure with arbitrary high
and per element spacetime orders of elements. Our numerical
results demonstrate that by using energy dissipation as an error
indicator and local adaptive operations in spacetime we can
significantly improve the efficiency of the method relative to
nonadaptive solutions.

I. SPACETIME DISCONTINUOUS GALERKIN METHOD

Fig. 1. Unstructured spacetime discretization used
in the SDG method.

Fig. 2. Patch-by-patch
solution procedure.

We present a spacetime discontinuous Galerkin (SDG)
method that directly discretizes the spacetime using unstruc-
tured grids. Many exceptional properties of the method stem
from the use of causal meshes. For example in the figure fig.
1 the solution of element A depends only on the solution of
earlier elements B and C given that the red facets are causal
(fastest waves shown in arrows only pass in one direction
through the facet). The level-1 elements depend only on initial
conditions and boundary conditions for the elements D and E.
The level-1 element solutions can be computed locally and
in parallel. Thus, causal SDG meshes enable asynchronous,
element-by-element solutions with linear solution complexity.

In practice, we replace the individual elements in the
1d×time with small clusters of simplicial elements called
patches, where only the exterior patch facets need to be causal
as shown in fig. 2 for clusters of tetrahedral elements in
2d×time. Using an advancing-front procedure, in each step
the Tent Pitcher algorithm [1]–[3] advances in time a vertex
in the front mesh to define a local front update; the causality

constraint limits the maximum time increment ∆t at the
vertex. We solve new patches as local problems and update
the current front, until the entire spacetime analysis domain is
solved.

II. EM FORMULATION

Given the lack of a natural metric in spacetime, we use
the differential forms notation for our formulation. The stan-
dard basis for spacetime 1-forms is {dx1,dx2,dx3,dt}. The
spacetime volume element is the 4-form Ω := dx1 ∧ dx2 ∧
dx3 ∧ dt, where “∧” is the exterior product operator on
forms. Using the Hodge star operator, the standard basis for
3-forms, {?dxj , ?dt} is obtained as ?dx1 = dx2 ∧ dx3 ∧ dt,
?dx2 = −dx1 ∧ dx3 ∧ dt, ?dx3 = dx1 ∧ dx2 ∧ dt and
?dt = −dx1 ∧ dx2 ∧ dx3. These satisfy dxi ∧ ?dxj = δijΩ,
dt ∧ ?dxj = 0, dt ∧ ?dt = Ω and dxi ∧ ?dt = 0. Electric E
and magnetic H fields are expressed as follows,

E = E1dx1 ∧ dt+ E2dx2 ∧ dt+ E3dx3 ∧ dt (1a)

H = H1dx1 ∧ dt+H2dx2 ∧ dt+H3dx3 ∧ dt (1b)

and electric D and magnetic B flux densities are given as,

D = D1dx2 ∧ dx3 +D2dx3 ∧ dx1 +D3dx1 ∧ dx2 (2a)
B = B1dx2 ∧ dx3 +B2dx3 ∧ dx1 +B3dx1 ∧ dx2 (2b)

By defining spacetime electromagnetic flux density,

ME := D −H MH := B +E (3)

all Maxwell’s equations can be written in the following form,

dM +RM = 0 (4)

where the spacetime electromagnetic source terms RM = J+
ρ combine electromagnetic current density J = [JE JH ]T

and charge density ρ = [ρE ρH ]T forms. 1 The expanded
form of (4) is,(

Ḋ + JE −∇×H
)
?dx− (∇.D− ρE) ?dt = 0 (5a)(

Ḃ + JH +∇×E
)
?dx− (∇.B− ρH) ?dt = 0 (5b)

1In general JH = 0 and ρH = 0 but this generality allows formulation
of certain artificial media used in computational electromagnetics.
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where the terms multiplying dx = eidx
i in (5a) and (5b)

are Ampère’s law with Maxwell addition and Faraday law
of induction, respectively, and the terms multiplying ?dt are
Gauss laws of electric and magnetic fields.

To obtain the discrete electromagnetic fields Uh :=
[Eh Hh]T for each element Q (e.g., elements A to G in fig.
1), the weighted residual statement for Ampère and Faraday
laws is formed by requiring that for all weight functions
Û = [Ê Ĥ]T in discrete space,

−
∫
Q i Û ∧ (dMh +Rh

M ) +
∫
∂Q i Û ∧ (M∗ −M) = 0(6)

whereM∗ are the numerical fluxes on the spacetime boundary
of an element ∂Q that are obtained by the solution to a local
Riemann problem herein.

The expanded form of discrete weak statement, which is
used in our numerical implementation, is obtained by the
application of Stokes theorem on (6),∫

∂Q

{(
Ê.D∗ + Ĥ.B∗

)
?dt+

(
Ê×H∗ − Ĥ×E∗

)
?dx

}
+

∫
Q

{(
− ˙̂
E.Dh −∇× Ê.Hh + Ê.Jh

E
)

+
(
− ˙̂
H.Bh +∇× Ĥ.Eh + Ĥ.Jh

H
)}
Ω = 0 (7)

III. h-ADAPTIVE METHOD

The spacetime electromagnetic energy flux N := u + S
combines electromagnetic energy density form u = 1

2 (E.D+
H.B)?dt and Poynting form S := E ∧H = E×H?dx. In
discrete setting N is expressed in terms of target fluxes for
U∗. Unlike continuum setting where energy is balanced, our
discrete method is dissipative, i.e., it can be shown that the
numerical energy dissipation for an element Q is nonnegative,

∆Q := −
[∫

∂Q
N(U∗) +

∫
Q
RN

]
≥ 0 (8)

where RN := (E.JE+H.JH)Ω is the energy balance source
term.

Let ∆̄ > ∆ be two adaptivity energy tolerances. An element
calls for local front refinement if ∆D > ∆̄. The next time Tent-
Pitcher [1] resumes front elements are refined and a smaller
element is generated. For example, in fig. 1 a refinement call
for an original element of the size of element A on top of
elements B and F results in a smaller element G the next
time a patch is erected there. If needed the spacetime order
of element can also be increased (p-enrichment) as shown, an
option not exercised herein. On the other hand, if ∆D < ∆ the
element is coarsenable and through spacetime mesh adaptive
operations [1], [3], the front mesh is coarsened when possible
and larger spacetime elements are created afterwards.

IV. NUMERICAL RESULTS

We solved a Transverse Electric (TE) wave scattering prob-
lem with initial condition H3(x1, x2) = cos(π2

x1

l ) cos(π2
x2

l )
for |x1|, |x2| ≤ l in the red square with l = 0.0625, and
zero E1, E2, E3 elsewhere. The electrical permittivity and
permeability for the interior (i) and exterior (e) regions, cf.
fig. 3 are εi = 1, µi = 1 and εo = 10, µo = 1, respectively.

a/na hmin have time (hour) ∆ # patches
a 9.77e−4 0.0303 72.23 1.08e−4 2.77e6
na 0.0474 0.0747 14.17 1.37e−3 4.73e5
na 0.0275 0.04296 92.49 8.04e−4 2.55e6
na 0.0134 0.0236 541.0 1.94e−4 1.56e7

TABLE I
COMPARISON OF ADAPTIVE (FIRST ROW) AND NONADAPTIVE RUNS.

Fig. 3. Initial mesh and schematic
of TE numerical example.

Table I compares minimum
and average element sizes
(hmin, have), simulation
time, total energy dissipation
∆ = ΣQ∆Q, and number of
patches between one adaptive
run (first row) and and three
nonadaptive simulations with
successively finer grids. As
evident, the adaptive run
achieves a smaller error than even the finest nonadaptive run
at substantially lower simulation time. Note that the adaptive
run starts with only 46 elements on the spatial front, cf. fig. 3,
and this number increases as wave fronts form and propagate.
In contrast, for nonadaptive runs the number of elements on
the spatial front is fixed and ranges from 8256 (coarsest run)
to 83071 (finest run). Figure fig. 4 presents a sequence of H3

solution for the adaptive run and fig. 5 depicts the cleaner
resolution of wave front for the adaptive simulation.

Fig. 4. Sequence of H3 mapped to color for the adaptive run.

Fig. 5. Comparison of adaptive and second nonadaptive runs at t = 2.35.
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